
GUI in Java – Lydia Clarke

Overview:

During my applications programming class at McMurry University, I was assigned by my teacher an

additional project to complete outside of class in order to earn honors credit hours. The assignment

would focus on coding a GUI in Java using eclipse which was a topic not taught during the course. This

project was meant to be worked on outside of class and required me to research and self-teach the

techniques and aspects I needed to execute to successfully complete the assignment. I was given one

month to complete the GUI and give a demonstration to the class as well as discuss the code behind it.

Here is the original assignment:

My Final Result:

How I approached this project:

Beginning Process

Being unfamiliar with programming GUIs in Java, I first needed to research how to get started

and the basic aspects I needed to include. When I receive any sort of programming assignment, I

always start with the simplest parts of my program then build up to the more complex ones.

Going piece by piece, helps me clearly understand what I am doing and allows me to quickly

locate any errors as I am only changing/adding things one at a time. I always say to myself and

when tutoring students at school, start with the easiest parts you know how to do or can figure

out quickly and get those working before turning your focus on the harder parts. This helps

makes a project easier to approach, and I have noticed also makes it easier for students to get

started who may feel overwhelmed by an assignment or project.

Getting Started:

Importing Classes:

It was important that I import the correct classes into my program for my GUI to run correctly. I

needed each of these classes in order for the buttons to function and execute the data correctly

when clicked, the percentage results to display the right decimal format, allow the computer to

randomize game play, how the objects are positioned on the screen, and the overall appearance

of the interface.

Creating JFrame:

This was my first initial step which was creating the window with its title and including the exit

button in the upper left-hand side of the window.

Once I successfully created the window, it was time to start adding the titles, columns and

buttons to my GUI. I focused on making sure the layout of the game looked how it was

supposed to before adding any further gameplay content.

JButtons:

The first part I started with was the game buttons :

“Rock”,”Paper”,”Scissors”, and “Clear”. I was mainly

focused on getting them to display on screen with

the right button text. I wasn’t going to worry about them doing anything until they appeared the

way I wanted. Creating the buttons was one of the easier pieces to do. Even though they were

easy to create, positioning them on the bottom of the screen wasn’t as easy as I thought it was

once I started to add JLabels.

JLabels:

For the game title and the “Player”, “Results”, and “Computer” headers in each column I created

JLabels. These lines of code simply tell the computer what the text will say but does not position

it at a specific part of the screen. Creating the labels was easy but putting them into a layout

became rather tricky. This was where I had one of my first major setbacks. There were so many

different ways I could try to code the positions of my titles and headers, but pieces of my GUI

overlapped or things would show up in the wrong place or not even show up at all. This was

where I started to learn that choosing the right layout to format my labels was very important. I

couldn’t just give things a direction and them show up where I wanted them to. After doing

some research, I discovered I needed JPanels to contain different parts of my interface, and

BorderLayout to position each part correctly.

JPanels & BorderLayout:

So to position my title, buttons, and column headers I needed to create JPanels. I made a panel

for each quadrant within my GUI then added my Labels and Buttons to the Panels I needed

them in. I once again ran into a layout problem. I didn’t immediately identify border layout as

what I needed. I thought I would simply containerize my labels into the panels and then just give

them a direction. Once again, things didn’t show up and the objects that did, were misplaced. I

really got stuck at this part trying all different types of layouts. At this point, I consulted my

professor and he recommended border layout.

Border Layout helped get the panels in the right place but my middle three panels still weren’t

equal size, and when the text was too long it didn’t move the overflow text to the next line. So I

first had to center the text based on the X-axis, and then to show the middle three columns

horizontally, I needed boxlayout to set them across the Y-axis. Now that I had the layout looking

how I needed, it was time to make the buttons work so the game would be playable.

Action listener & Action event

My next step was for the player and computer columns to show what each side played. For my

actionPerformed class to work, I needed to add actionListeners to each of my buttons so the

computer will react to the button being clicked.

Next, I focused on making sure the player and computer choice displayed first; I wasn’t going to

worry about calculating the game averages and percentages yet. I created my actionPerformed

class that would tell the computer what to do when a gameplay button has been clicked. This

part took a lot of trial and error because I wasn’t sure if I wanted to use nested loops or a switch

statement. It took a few iterations of the nested loops not quite working that I changed it to a

switch statement with four cases “Rock”, “Paper”, “Scissors” and “Clear”. When the player

makes their selection, the computer randomizes a 0,1, or 2. Based on the player choice that case

is executed then the program goes through an if-else based on the computer’s random number

to determine what message will be displayed in the “player” column and the “computer”

column. I also spent extra time trying to get the game results to line up right, I was testing

different layouts, but I realized using HTML code in my print statements was much simpler and

gave me the best results.

Calculating Averages:

Now that everything was showing up in the correct place, buttons were working, and gameplay

results were displaying, I needed to calculate how many games played and the percentage of

games won, lost, or tied then have that display in the “Results” column. I used a simple if-else

based on the counter variables in the switch statement cases to calculate the averages. This step

was simple; however, displaying the correct text in the “Results” column was not. I was able to

get the text to show up right, but all my percentages and the game count were zero. I could get

the correct numbers if the decimal place was the full 7 places long but I need it to only show one

place after the decimal. I finally figured out that if I did not create a decimal format specifying

the number of places, all my results would be zero. Now that I finally had my Rock, Paper,

Scissors game fully functioning and running correctly, I wanted to change the default view and

add some color as well as make the font a little bigger.

Fonts, Borders, & Colors:

To use the font style and size I wanted I simply made three different font styles, and anywhere I

wanted to use that font I did “.setFont”.

For font color, I only just changed the foreground and background colors. So the foreground

color set the color of the text.

For my red borders throughout the GUI, I simply created one style of border called “redline’,

then used “.setBorder” to apply it to whatever object I wanted to have a red border.

Takeaways:

This project was in no way a walk in the park. I faced many setbacks and difficulties throughout

my time working on it. Some days I would have a lot of progress, while other days I would be

completely stuck. This GUI program really challenged me as it was something I had never done

or been taught before. While I know GUIs aren’t commonly programmed this way in Java

anymore, programming this improved my skills of being able to find the answers to new and

difficult challenges while also making me feel more confident in my abilities as a programmer.

This project is a great reflection of my ability to self-teach and approach programming

techniques/topics I am not experienced with. I was also able to finish within the time limit of

one month on top of tutoring in the library and my work for other courses which shows that I

can efficiently manage and balance my time.

